Search results for " 14R05"
showing 2 items of 2 documents
Embeddings of a family of Danielewski hypersurfaces and certain \C^+-actions on \C^3
2006
International audience; We consider the family of complex polynomials in \C[x,y,z] of the form x^2y-z^2-xq(x,z). Two such polynomials P_1 and P_2 are equivalent if there is an automorphism \varphi of \C[x,y,z] such that \varphi(P_1)=P_2. We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category.
Affine Surfaces With a Huge Group of Automorphisms
2013
We describe a family of rational affine surfaces S with huge groups of automorphisms in the following sense: the normal subgroup Aut(S)alg of Aut(S) generated by all algebraic subgroups of Aut(S) is not generated by any countable family of such subgroups, and the quotient Aut(S)/Aut(S)alg cointains a free group over an uncountable set of generators.